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Abstract

We generalize Blackwell (1951)’s informativeness order to ambiguous experi-

ments. The ambiguity in experiments is rooted in a lack of understanding about

their probabilistic content. Formally, an ambiguous experiment is modeled as a

mapping from an auxiliary state space to the set of unambiguous experiments. We

show that one ambiguous experiment is preferred to another by every decision maker

for every decision problem if and only if they are related by a condition called prior-

by-prior dominance, which states that for any first-order belief the decision maker

entertains on the auxiliary state space, the expected experiment resulting from this

belief for the first experiment is Blackwell more informative than that of the second.

This equivalence is robust across a wide range of ambiguity preferences. Compar-

isons of sets of experiments evaluated using the maxmin criterion are studied as a

special case and are shown to result in a weaker informativeness order called Wald-

more-informative, which states that for any Blackwell experiment in the convex hull

of the first set of experiments, there exists another in the convex hull of the second

set that is Blackwell less informative.
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1 Introduction

Blackwell (1951, 1953) provides an intuitive way of modeling information by consider-

ing information as statistical experiments and establishes an elegant equivalence result on

comparisons of such statistical experiments. However, information in reality is pervasively

ambiguous, as we rarely know the exact probabilistic content of a statistical experiment

when we receive information. For example, a medical test for a certain disease can be

thought of as a statistical experiment, and such tests have the possibility of both false

positives (the patient does not have the disease but the result is positive) and false neg-

atives (the patient has the disease but the result is negative). Seldom do patients know

the exact probabilities of false positive and false negative results, and they may therefore

view the distribution of test results as ambiguous.

In this sense, Blackwell’s formulation of information as unambiguous statistical exper-

iments seems to be too ideal, and no results were provided on comparing the informative-

ness of experiments when ambiguity is present, even though some intuitive comparisons

can be made in reality (e.g., patients may still intuitively prefer a medical test that has

a smaller maximum probability of false positive or negative results). To accommodate

such intuitive comparisons, can we generalize Blackwell’s theorem on the comparison of

(unambiguous) experiments to compare the “informativeness” of ambiguous experiments?

In other words, can we find a meaningful generalization of Blackwell’s garbling condition

that is equivalent to every decision maker preferring one ambiguous experiment to another

in every decision problem?

This paper provides a positive answer to the question above. Indeed, we can generalize

the informativeness notion even when there is ambiguity in the information structures.

Moreover, we can show that this new informativeness notion is robust across a wide range

of ambiguity preferences.

Let Ω be a finite set of states that are directly relevant to the payoff of the decision

maker (henceforth DM). An unambiguous experiment is a mapping p : Ω→ ∆(S) where

S is a finite set of signal realizations and ∆(S) is the set of all probability measures over

S. The experiment p is unambiguous since the probability that signal s is observed in

state ω is unambiguously specified for all s in S and ω in Ω. More than one approach is

possible to model ambiguity in experiments. A natural first thought is to consider sets of

unambiguous experiments (evaluated using the maxmin criterion), which we analyze in

detail in Section 4. However, such a modeling approach significantly restricts the richness
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of ambiguity preferences that can be considered. To allow for more general ambiguity

preferences (e.g., the smooth ambiguity preferences), we introduce an auxiliary state space

Θ. An ambiguous experiment is modeled as a mapping p : Ω × Θ → ∆(S). For each

auxiliary state θ ∈ Θ, p(·, θ) : Ω→ ∆(S) is the corresponding unambiguous experiment.

The DM faces ambiguity on Θ. Lack of understanding of the distribution of θ translates

to lack of understanding of the probabilistic content of the experiment, making this a

convenient (and in some sense canonical) way to model ambiguity about experiments. In

particular, as we will show in Section 4, this modeling approach nests the comparison of

sets of experiments evaluated using the maxmin criterion as a special case. The following

two examples further illustrate our modeling approach with an auxiliary state space Θ.

Example 1. Consider COVID-19 tests at different hospitals supplied by a single phar-

maceutical company. The auxiliary state space Θ could be the set of all possible levels of

test precision (in terms of likelihoods of false positives and false negatives). Patients may

face ambiguity on Θ since there might be limited data about the precision for a relatively

new test (or when applying an existing test to a new variant of the virus). The accuracy

of any test clearly depends on Θ, but it can still vary across different hospitals due to

different implementations (e.g., some hospitals may have more experienced testing crews

than others).

Example 2. Consider financial analysis about a firm’s financial status conducted by

different financial service companies. The auxiliary state space Θ could be a set capturing

the aspects that are common to all analysis but open to interpretation, such as the quality

of public data or the representativeness (or predictive power) of past observations for

future performance. Outside investors may face ambiguity on Θ due to their lack of

relevant knowledge. The informational quality of any analysis clearly depends on Θ, but

it can still vary across different companies.

We view the auxiliary state space as a modeling device that represents the common

source of ambiguity for the ambiguous experiments to be compared. We treat this space

and the dependence of the experiments on it as commonly understood by both the modeler

and the DM. It is “auxiliary” since it is not directly payoff-relevant and influences the DM’s

decision and payoff only through influencing the information content of the experiment.

Patients’ payoffs only directly depend on whether or not they are infected, but not directly

on the precision of the test. Investors’ profits only directly depend on the financial status

of the company, but not directly on the quality of the financial analysis.
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1.1 Preview of Main Results

Let p : Ω × Θ → ∆(S) be an ambiguous experiment. For a probability measure µ

over the auxiliary state space Θ, the expected experiment pµ : Ω → ∆(S) is defined by

taking the expectation of p with respect to µ, that is, pµ :=
∫

Θ
p(·, θ) dµ(θ). Expected

experiments are unambiguous by construction. Two ambiguous experiments p and p′

are related by the prior-by-prior dominance condition if the expected experiment pµ is

Blackwell more informative than p′µ for every µ. We show in Section 3 that p is preferred

to p′ (i.e., guarantees a higher ex-ante utility) by every decision maker in every decision

problem if and only if p prior-by-prior dominates p′. Prior-by-prior dominance is a direct

generalization of Blackwell’s informativeness notion: When Θ is a singleton, ambiguous

experiments reduce to unambiguous experiments and prior-by-prior dominance reduces

to being Blackwell more informative.

If a DM’s ambiguity preference could be summarized by a single subjective belief µ

over Θ, then the problem of comparing ambiguous experiments p and p′ can be simplified

as comparing their corresponding expected experiments pµ and p′µ. This simplification

is not possible in general since a DM facing ambiguity may have more general ambiguity

preferences (e.g., the multiple prior preferences or the smooth preferences). Nonetheless,

our main result implies that if pµ is Blackwell more informative than p′µ for every possible

probability measure µ over Θ, then the DM will prefer p to p′ as long as his ambiguity

preference can be represented by some monotone aggregator of the auxiliary states, even

if this aggregator does not correspond to a single subjective belief. This class of monotone

aggregators is extremely general and includes essentially all ambiguity preference models

used in the literature.

On the one hand, the prior-by-prior dominance condition is powerful since it is suf-

ficient for guaranteeing higher ex-ante utility across a wide range of ambiguity prefer-

ences. On the other hand, it is not overly restrictive, in the sense that it is necessary for

guaranteeing higher ex-ante utility within the small class of subjective expected utilities.

Therefore, prior-by-prior dominance is a robust equivalence condition for guaranteeing

higher ex-ante utility for any class of monotone ambiguity preferences that nests subjec-

tive expected utility.

We now give a numerical example to illustrate our comparison results:

Example 3. Consider two hospitals offering COVID-19 tests. p1 summarizes the test

offered at Hospital 1 while p2 summarizes that at Hospital 2. Individuals are either
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infected (I) or not infected (N), and this infection status is the payoff relevant state. The

outcome of a test is either positive (+) or negative (−). Probabilities of false positives and

false negatives are ambiguous, modeled through an auxiliary state space Θ = [0, 0.02] ×
[0, 0.02]. A typical element θ = (θ+, θ−) denotes that the probability of a false positive is

θ+ and the probability of a false negative is θ−.

In this example, Ω = {I,N}, S1 = S2 = {+,−}, and Θ = [0, 0.02]× [0, 0.02]. Suppose

p1 and p2 are given by

p1(·, θ+, θ−) =

+ −
I 1− θ− θ−

N θ+ 1− θ+

p2(·, θ+, θ−) =

+ −
I 1− 1.01θ− 1.01θ−

N 1.01θ+ 1− 1.01θ+

where (θ+, θ−) ∈ Θ. That is, the test offered at Hospital 2 is more likely to generate false

positives and false negatives in every possible state.1 It can be checked that p1 prior-by-

prior dominates p2, coinciding with our intuition that p1 should be regarded as “more

informative.” To further illustrate, consider a third test p3 defined by

p3(·, θ+, θ−) =

+ −
I 1− α α

N α 1− α

That is, p3 is an unambiguous test with a known false positive/negative rate of α. When

α = 0, p3 prior-by-prior dominates both p1 and p2, and will be considered superior

by every decision maker. When α ≥ 0.02, p1 prior-by-prior dominates p3 and is thus

preferred. When α ∈ (0, 0.02), p3 is in general not comparable with p1 or p2, as the

decision maker’s subjective belief over Θ becomes relevant. For example, if a decision

maker believes that both θ+ and θ− do not exceed α with probability 1 in a certain

decision scenario, then he would prefer p1 to p3 in that scenario.

Another possible approach to model the ambiguity in experiments is to consider sets of

unambiguous experiments. We show in Section 4 that we can treat comparisons of sets of

unambiguous experiments as a special case of comparisons of ambiguous experiments by

focusing on a specific class of DMs: The DMs who apply Wald’s maximin criterion when

aggregating payoffs across θ. In this special case, one set of unambiguous experiments P

1One possible justification for the perfect correlation of the tests on Θ is as follows: Both hospitals

utilize testing kits from the same pharmaceutical company but Hospital 2 has a less experienced testing

crew who increases the probabilities of false positive/negative due to human error.
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is preferred to another P ’ by every decision maker who applies the maximin criterion if

and only if a Wald-more informative condition (W -more informative, in short) holds: We

say P is W -more informative than P ′ if for any unambiguous experiment p in the convex

hull of P , there exists p′ in the convex hull of P ′ such that p is Blackwell more informative

than p′. We show that the W -more informative condition induces an informativeness

order that is weaker than that induced by prior-by-prior dominance, that is, there exists

pairs of ambiguous experiments that are not comparable according to the prior-by-prior

dominance condition although their corresponding sets of experiments are comparable

according to the W -more informative condition. The intuition about why we get a weaker

notion of informativeness is as follows: A DM who applies the maximin criterion reduces

to an expected utility maximizers only when the set of experiments is a singleton. Thus,

this specific class of DMs does not nest the class of DMs with subjective expected utility,

which causes the prior-by-prior dominance condition to be not necessary.

For a more concrete illustration, consider Example 3 again and define

P1 := {p1(·, θ) | θ ∈ Θ}, P3 := {p3(·, θ) | θ ∈ Θ}.

Then in cases where α = 0 or α ≥ 0.02, W -informativeness and prior-by-prior dominance

agree with each other: P3 is W -more informative than P1 when α = 0 and the rank is

simultaneously reversed when α ≥ 0.02. However, when α ∈ (0, 0.02), P3 is W -more

informative than P1 even though their corresponding ambiguous experiments are not

comparable according to the prior-by-prior dominance condition.

Our results hinge on several assumptions. First, we assume that the DM either has

commitment power or is dynamically consistent. This assumption is needed as dynamic

inconsistency may arise for some belief updating protocols when ambiguity is present.

Second, we assume that the ambiguity is only on the auxiliary state space Θ while the

DM has an unambiguous prior over the payoff-relevant state space Ω.2 Third, we assume

that the auxiliary states only have an indirect impact on the DM’s payoff. A detailed

discussion of the effects of relaxing the second and the third assumptions is in Section 5.

1.2 Related Literature

We contribute to the literature on the interaction of Blackwell’s informativeness order

and ambiguity preferences. Models based on the combination of ambiguous priors and

2Like in Example 3, the ambiguity is about the precision of the test, but not about the prior probability

that a test taker is infected.
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unambiguous experiments have been previously considered in the literature. Çelen (2012)

shows that the Blackwell informativeness order remains valid among the class of maxmin

expected utility preferences, under the assumption that the DM has commitment power.

Further expanding the class of ambiguity preferences, Li and Zhou (2016) keep the com-

mitment assumption and validate that the Blackwell informativeness order remains valid

when the DM possess the very general uncertainty averse preferences as in Cerreia-Vioglio,

Maccheroni, Marinacci, and Montrucchio (2011). In contrast to these studies, we consider

a different problem and our study leads to a very different result: In our model, the ambi-

guity is in the information structures instead of in the prior beliefs over the payoff relevant

state space, and our prior-by-prior dominance condition is a non-trivial generalization of

the Blackwell informativeness order. Although different from existing papers, the study

of ambiguous information structures could be important since information structures are

indeed pervasively ambiguous in reality, and ambiguous information has gained increased

attention in both the applied literature3 and the experimental literature4 as its impor-

tance has become recognized. We also discuss in Section 5 the combination of ambiguous

priors and ambiguous experiments as an extension to our model. Chen (2020) shares our

approach of modeling ambiguous experiments as a mapping from an auxiliary state space5

to the space of Blackwell experiments, but his focus is on the learning behavior under

ambiguous experiments, while our focus is on comparing their informativeness.

The closest work to ours is Gensbittel, Renou, and Tomala (2015) (henceforth GRT).

In their paper, ambiguous experiments are modeled as convex and compact sets of joint

distributions over payoff-relevant states and signal realizations. They consider DMs who

apply Wald’s maximin criterion and study models with and without the commitment

assumption. Their case of commitment has a large overlap with the special case of our

model discussed in Section 4. One major methodological difference sets us apart, both

in terms of our results, and in terms of their interpretations. We model unambiguous

experiments as collections of conditional distributions over signal realizations given the

state, while they model them as joint distributions over states and signal realizations.

Although our results are superficially similar, they are not directly comparable unless extra

assumptions regarding the payoff-relevant prior are imposed. By their modeling approach,

3For example, Beauchêne, Li, and Li (2019), Bose and Renou (2014), Chen (2020), and Epstein and

Schneider (2007, 2008).
4For example, Epstein and Halevy (2019), Liang (2019) and Shishkin and Ortoleva (2019).
5An auxiliary state space is referred to as “a model space” in his paper.
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GRT treat the DM’s prior belief over Ω as part of the information structure instead of part

of the DM’s preference parameters. Therefore, they are interpreting the theory as if the

modeler can observe the DM’s payoff-relevant priors. In contrast, our modeling approach

treats the DM’s prior belief over Ω as a preference parameter. Therefore, our comparison is

prior-free in the sense that it can be applied when the modeler cannot observe DM’s payoff-

relevant priors.6 In addition, GRT study a model where the commitment assumption is

relaxed and the DMs still apply the maximin criterion, while we impose the commitment

assumption but consider a much more general class of ambiguity preferences.

The rest of the paper is organized as follows. We review Blackwell’s theorem in Section

2. General comparisons of ambiguous experiments are studied in Section 3. The special

case of comparisons of sets of experiments is studied in Section 4. Variations of the key

assumptions and their impact on our results are considered in Section 5. Proofs omitted

in the main text are relegated to the Appendix.

2 Blackwell’s Theorem

In this section, we describe some primitives for comparisons of experiments and review

Blackwell’s theorem. Let Ω be a finite set of states of the world. For any finite set X, we

use ∆(X) to denote the set of all probability measures over X.

Definition 1. A Blackwell experiment (or interchageably, an experiment, or an

unambiguous experiment) is a mapping p : Ω→ ∆(S) where S is a finite set of signal

realizations and p maps each state ω ∈ Ω to a probability measure over S.

Slightly abusing notation, we will write p(s | ω) to denote the probability of observing

s when the state is ω. An experiment can thus be viewed as a |Ω| × |S| real matrix with

each row representing a probability distribution over S. To define the notion of garbling,

we first define the composition of two stochastic operators.

Suppose X, Y, Z are finite sets, and α : X → ∆(Y ) and β : Y → ∆(Z) are two

stochastic operators. Their composition β ◦ α : X → ∆(Z) is defined by

(β ◦ α)(z | x) =
∑
y∈Y

α(y | x)β(z | y), ∀(x, z) ∈ X × Z.

That is, the composition of β and α gives a probability of z given x when the stochastic

operator α is applied followed by β. Now we can define the notion of garbling.

6See Section 4.3 for additional discussion and examples.
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Definition 2. Given two Blackwell experiments p : Ω→ ∆(S) and p′ : Ω→ ∆(S ′), p′ is

a garbling of p if there exists some γ : S → ∆(S ′) such that p′ = γ ◦ p.

Intuitively, p′ is a garbling of p if one can replicate p′ (in terms of the conditional

probability of s′ given ω) by adding “noise” (applying a stochastic operator) to p.

Consider an individual with a finite set of actions A facing a set S of signal realizations

(we assume S to be finite throughout the paper). An action plan is a mapping σ : S →
∆(A). We write σ(· | s) to denote the individual’s (mixed) strategy after observing signal

realization s. We use AS to denote the collection of all action plans once the set of actions

A and the set of signal realizations S are fixed, that is, AS := {σ | σ : S → ∆(A)}.
Consider a Bayesian expected-utility maximizer with a finite set of actions A, a state-

dependent utility function u : Ω×A→ R, and a prior π ∈ ∆(Ω). For this individual, the

expected utility from action plan σ for experiment p is

U(σ, p) :=
∑
s∈S

∑
ω∈Ω

∑
a∈A

π(ω)p(s | ω)σ(a | s)u(ω, a) (1)

Definition 3. Facing A, u and π, the individual’s ex-ante expected utility from the

experiment p is maxσ∈AS U(σ, p).

We now review Blackwell’s theorem.

Theorem 1 (Blackwell (1951, 1953)). Given two Blackwell experiments p : Ω → ∆(S)

and p′ : Ω→ ∆(S ′), the following are equivalent:

1. p′ is a garbling of p.

2. For any A, u, π and any action plan σ′ ∈ AS′, there exists an action plan σ ∈ AS
such that U

(
σ, p
)

= U
(
σ′, p′

)
.

3. Every Bayesian expected utility maximizer prefers p to p′ for any possible decision

problem. That is, p gives weakly higher ex-ante expected utility than p′ for every A,

u, and π.

For a simple and elegant proof of Blackwell’s theorem, see de Oliveira (2018). If any of

the conditions in Theorem 1 holds, we say p is (Blackwell) more informative than p′,

and write p D p′. Blackwell’s theorem establishes the equivalence of a statistical condition

(garbling) and an economical condition (higher ex-ante expected utility for any decision

problem). Our goal is to study ambiguous experiments and characterize the equivalent

condition (generalization of “garbling”) to all decision makers with more general ambiguity

preferences having higher ex-ante utility.
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3 Comparing Ambiguous Experiments

As before, let Ω be a finite set of states that are directly relevant to the DM’s payoff. Let

Θ be a set of auxiliary states that govern the realization of Blackwell experiments. As

illustrated in the introduction, Θ represents the source of ambiguity for the experiment.

For ease of exposition, we focus on the case where Θ is a finite set in the main text. Our

characterization result remains valid for any nonempty Θ. The more general result is

stated in Appendix A and proved in Appendix B.

Definition 4. An ambiguous experiment is a mapping p : Ω×Θ→ ∆(S) where S is

a finite set of signal realizations.

For each auxiliary state θ ∈ Θ, p(·, θ) can be thought of as a mapping from Ω to

∆(S), that is, p(·, θ) is the Blackwell experiment associated with state θ, and a natural

interpretation for p is a mapping from the auxiliary state space to the set of Blackwell

experiments. This structure helps to capture the DM’s lack of understanding of the

probabilistic content of the experiment.

Consider an individual with a finite set of actions A, a state-dependent utility function

u : Ω×A→ R and a prior belief π ∈ ∆(Ω). For ambiguous experiment p and action plan

σ, the expected utility conditional on state θ is

U
(
σ,p(·, θ)

)
=
∑
s∈S

∑
ω∈Ω

∑
a∈A

π(ω)p(s | ω, θ)σ(a | s)u(ω, a). (2)

To clarify, we use p(s | ω, θ) to denote the probability of observing s when the pair of

states is (ω, θ). This is another slight abuse of notation as we also use p(·, θ) to denote

the Blackwell experiment associated with auxiliary state θ. These conditional expected

utilities will be aggregated through an aggregator over Θ.

Definition 5. We say V : RΘ → R is a monotone aggregator if V is continuous7 and

V (f) ≥ V (g) whenever two functions f, g : Θ→ R satisfy f(θ) ≥ g(θ) for all θ ∈ Θ.

Essentially all ambiguity preferences used in the literature correspond to some mono-

tone aggregator, and special cases of V will be discussed in the next section to illustrate

its generality. Since monotonicity is the only restriction we have on V , flexible ambiguity

attitudes (ambiguity averse, ambiguity loving, mixed attitude) are allowed for essentially

all classes of ambiguity preferences it nests.

7Since Θ is finite, we can endow RΘ with the Euclidean topology and the continuity is with respect

to this standard topology.
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Definition 6. Let V : RΘ → R be a monotone aggregator that captures the individuals’

ambiguity preferences. Given A, u, π, and V , the individual’s ex-ante utility from the

ambiguous experiment p is

max
σ∈AS

V
({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
(3)

where U
(
σ,p(·, θ)

)
is the conditional expected utility defined in equation (2).

Two implicit assumptions are behind the definition above. First, we assume that the

DM’s has an unambiguous prior belief π over the payoff-relevant space Ω. Moreover, the

payoffs u(ω, a) are first aggregated into the expected utility conditional on each auxiliary

state θ, and the DM’s ex-ante utility is the aggregation of these conditional expected

utilities by V . Whether or not the DM has a subjective belief regarding the auxiliary

state space Θ is generally irrelevant given the utility specified in equation (3).8 Second,

we assume that the auxiliary states do not directly affect the payoff of the DM. This

reflects our interpretation that the auxiliary states only directly affect the information

content of an experiment, but do not affect outcomes of the DM’s actions.9

The timing of the events is as follows: First, the DM makes an action plan σ ∈ AS
and we assume the DM is dynamically consistent.10 Second, an auxiliary state θ is drawn

from Θ but not observed by the DM and signal realizations will be generated according

to the Blackwell experiment p(·, θ). Third, a payoff relevant state ω is drawn from Ω and

a signal realization s is drawn from S according to the distribution p(· | ω, θ). Last, the

DM observes the signal realization s and acts according to his action plan σ(· | s).

3.1 Classes of Ambiguity Preferences

Any decision maker will be identified with his ambiguity preference, which is fully captured

by its corresponding monotone aggregator V . Let VMono denote the class of monotone

8We believe this is a reasonable first step to formalize the evaluation of ambiguous information. We

will discuss the impact of allowing prior ambiguity on Ω and more general procedures to aggregate u(ω, a)

into an ex-ante utility function in detail in Section 5.
9See Section 1 for more examples. The alternative modeling approach is to consider a mapping

u : Ω×Θ×A→ R in which the auxiliary states have a direct impact on the DM’s payoff for each action.

This approach will be discussed in detail in Section 5.
10As is well known, dynamic inconsistency may arise with belief updating when ambiguity is present.

For an example that illustrates the prevalence of violation of dynamic consistency in general dynamic

ambiguity preference models, see Example 2 of Asano and Kojima (2019). Alternatively, we can assume

the DM can commit to any action plan he makes.
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aggregators, that is, VMono := {V : RΘ → R | V is monotone}. VMono will be the largest

(in terms of set inclusion) class of aggregators we study.

Some special cases of V are listed below to illustrate the generality of our approach to

represent ambiguity preferences using monotone aggregators.

Subjective expected utility. V is specified by a single prior µ ∈ ∆(Θ), which

represents the DM’s subjective belief over Θ. Fixing µ, Vµ : RΘ → R is defined by

Vµ(f) :=

∫
Θ

f(θ) dµ(θ) =
∑
θ∈Θ

f(θ)µ(θ), (4)

and as in equation (3), we apply this aggregator to f(θ) = U
(
σ,p(·, θ)

)
.11 Let VEU denote

the class of subjective expected utility aggregators, that is, VEU := {Vµ | µ ∈ ∆(Θ)}.
The multiple prior preferences, introduced in Gilboa and Schmeidler (1989). V

is specified by a closed set of priors M ⊂ ∆(Θ), which represents the set of priors the DM

is willing to entertain. Fixing M , VM is defined by

VM(f) := min
µ∈M

∫
Θ

f(θ) dµ(θ) = min
µ∈M

∑
θ∈Θ

f(θ)µ(θ). (5)

In the representation of Gilboa and Schmeidler (1989), M is required to be closed

and convex. We only require the closedness of M to guarantee that the minimum is

well-defined. Let VMP denote the class of aggregators corresponding to the multiple prior

preferences, that is, VMP := {VM |M ⊂ ∆(Θ), M closed}.
Wald’s maximin criterion. A subclass of aggregators within VMP can be described

by the maximin criterion introduced in Wald (1950), where the DM is willing to entertain

all degenerate beliefs δθ for each θ ∈ Θ. The aggregator VW is defined by

VW (f) := min
µ∈{δθ|θ∈Θ}

∑
θ∈Θ

f(θ)µ(θ) = min
θ∈Θ

f(θ). (6)

We will sometimes refer to VW as the Wald aggregator, and unlike the other classes of

aggregators considered in this section, {VW} is not a superset of VEU . We will analyze

this subclass in detail in Section 4.

The smooth ambiguity preferences, introduced in Klibanoff, Marinacci, and

Mukerji (2005). V is specified by a function φ : R → R and a second-order belief

11By applying Vµ to equation (3), the DM behaves as if he has a belief over Ω × Θ that is indepen-

dent across Ω and Θ. This sense of “independence” does not carry over to the other listed ambiguity

preferences, since they cannot be summarized by a single belief over Θ.
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ν ∈ ∆(∆(Θ)).12 Fixing φ and ν, Vφ,ν is defined by

Vφ,ν(f) :=

∫
∆(Θ)

φ

(∫
Θ

f(θ) dµ(θ)

)
dν(µ) (7)

In the representation of Klibanoff, Marinacci, and Mukerji (2005), φ is required to be

strictly increasing and weakly concave, where the concavity captures the DM’s aversion to

ambiguity. We only require φ to be strictly increasing to guarantee that Vφ,ν is monotone

and mixed ambiguity attitudes could be allowed. Let VS denote the class of smooth ambi-

guity preference aggregators, that is, VS := {Vφ,ν | φ is strictly increasing, ν ∈ ∆(∆(Θ))}.
All classes of ambiguity preferences listed above are special cases of the uncertainty

averse preferences introduced in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2011), which also corresponds to a monotone aggregator over the conditional expected

utilities.13

3.2 Prior-by-Prior Dominance

The last piece of the puzzle for establishing the informativeness order over ambiguous

experiment is a statistical condition that generalize the garbling condition in Blackwell’s

theorem. To get to that condition, it is useful to first define expected experiments.

Definition 7. Fixing an ambiguous experiment p : Ω × Θ → ∆(S) and a probability

measure µ ∈ ∆(Θ), the expected experiment with respect to µ , denoted by pµ, is a

Blackwell experiment defined by pµ :=
∑

θ∈Θ p(·, θ)µ(θ), or more explicitly

pµ(s | ω) :=
∑
θ∈Θ

p(s | ω, θ)µ(θ), ∀(s, ω) ∈ S × Ω. (8)

Now we can formally state our statistical condition.

Definition 8. Let p : Ω × Θ → ∆(S) and p′ : Ω × Θ → ∆(S ′) be two ambiguous

experiments. We say p prior-by-prior dominates p′ if pµ is Blackwell more informative

than p′µ for all µ ∈ ∆(Θ), and write p DPBP p′.

12∆(∆(Θ)) is the set of all probability measures on the Borel σ-algebra of ∆(Θ) under the Euclidean

topology.
13The representation is in the form of minµ∈∆(Θ) G(U(µ), µ) where U(µ) is an expected utility index

for belief µ. Thus, their aggregator G takes two arguments as inputs, the conditional expected utility and

the belief itself, while our aggregator V only takes in one. Therefore, strictly speaking, the uncertainty

averse preference is not a special case of our set of monotone aggregators. However, it is indeed strictly

increasing in its first argument, the expected utility conditional on µ. So our analysis and main result

will go through for uncertainty averse preferences as well.
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In other words, p DPBP p′ if there exists a family of garblings {γµ} such that

p′µ = γµ ◦ pµ for all µ ∈ ∆(Θ). (9)

The “prior-by-prior” quantifier in the name of the condition does not refer to anything

related to a decision problem or preference parameters. Each prior µ is just a probability

measure over Θ and is not meant to be interpreted as anything more. In this sense, this

prior µ ∈ ∆(Θ) is quite different from a payoff-relevant prior belief π ∈ ∆(Ω). The latter

is a preference parameter while the former is not.

The prior-by-prior dominance condition is our desired generalization of Blackwell’s

garbling condition since it is the equivalent condition for guaranteeing a weakly higher

ex-ante utility in every decision problem for every DM. Intuitively, if p DPBP p′, then a

DM can rank them according to the Blackwell order if his preference can be represented

by an aggregator that corresponds to a single subjective belief over Θ. Having such a

representation is not possible in general since there is ambiguity on Θ. Our result states

that p and p′ can still be ranked, independent of any decision problem, when more general

ambiguity preferences are considered.

Theorem 2. Let p : Ω × Θ → ∆(S) and p′ : Ω × Θ → ∆(S ′) be two ambiguous

experiments, and let V be a class of aggregators such that VEU ⊂ V ⊂ VMono.

The following conditions are equivalent:

1. p prior-by-prior dominates p′.

2. For any A, u, π and any action plan σ′ ∈ AS′, there exists σ ∈ AS such that

U
(
σ,p(·, θ)

)
≥ U

(
σ′,p′(·, θ)

)
for all θ ∈ Θ.

3. p is preferred to p′ in every decision problem by every decision maker whose ambi-

guity preference can be represented by some V ∈ V. That is, p gives weakly higher

ex-ante utility than p′ for every A, u, π, and every V ∈ V.

The proof of Theorem 2 is omitted since it is a corollary of a more general theorem

(Theorem 4), formally stated in Appendix A and proved in Appendix B, that covers the

case in which the auxiliary state space Θ can be any non-empty set.

Condition 1 is a statistical condition about the ambiguous experiments and indepen-

dent of any decision problem or preference parameters, and condition 3 is an economical
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condition about the instrumental values of ambiguous experiments. Establishing the

equivalence of conditions 1 and 3 helps us achieve the separation of the preferences and

information structures like Blackwell’s theorem.

Condition 2 states that for any action plan σ′ made for p′, there exists an action

plan σ for p that guarantees a weakly higher expected utility in every auxiliary state.

It is an intermediate condition for the clarification of the difference of Theorem 2 and

Blackwell’s theorem. It also highlights the importance of our use of monotone aggregators

to represent ambiguity preferences since we only have weak inequality for the conditional

expected utilities, unlike the equality we had in its counterpart in Blackwell’s theorem

(condition 2 of Theorem 1).

Remark. Prior-by-prior dominance is not implied by “state-by-state dominance” (which

simply means that p(·, θ) is Blackwell more informative than p′(·, θ) for all θ ∈ Θ). To

see this, consider the following example.

Example 4. Let Ω = {ω1, ω2}, S = S ′ = {s1, s2}, and Θ = {θ1, θ2}, and

p(·, θ1) =

s1 s2

ω1 1 0

ω2 0 1

p(·, θ2) =

s1 s2

ω1 0 1

ω2 1 0

p′(·, θ1) =

s1 s2

ω1 0.9 0.1

ω2 0.1 0.9

p′(·, θ2) =

s1 s2

ω1 0.9 0.1

ω2 0.1 0.9

Then p(·, θi) is strictly more informative than p′(·, θi) for i ∈ {1, 2}, but for any belief

with µ(θ1) ∈ (0.1, 0.9), p′µ is strictly more informative than pµ.

Another condition that is closely related to prior-by-prior dominance is global Blackwell

dominance.

Definition 9. Let p : Ω × Θ → ∆(S) and p′ : Ω × Θ → ∆(S ′) be two ambiguous

experiments. We say p globally Blackwell dominates p′ if there exists a garbling

γ : S → ∆(S ′) such that p′(·, θ) = γ ◦ p(·, θ) for all θ ∈ Θ, and write p DGB p′.

Given the linearity of the expectation operator, p DGB p′ if and only there exists a

single garbling γ : S → ∆(S ′) such that

p′µ = γ ◦ pµ for all µ ∈ ∆(Θ). (10)
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Comparing equations (9) and (10), we can see intuitively that prior-by-prior dominance is

a weaker condition than global Blackwell dominance: To satisfy prior-by-prior dominance,

different µ and µ′ in ∆(Θ) can correspond to different garblings γµ and γµ′ , but to satisfy

global Blackwell dominance, one garbling γ has to work uniformly across all µ. The

following proposition formalizes this intuition.

Proposition 1. Let p : Ω × Θ → ∆(S) and p′ : Ω × Θ → ∆(S ′) be two ambiguous

experiments. If p globally Blackwell dominates p′, then p prior-by-prior dominates p′.

The converse is not true.

Within our current framework, global Blackwell dominance is not our desired gen-

eralization of Blackwell’s garbling condition since it is too strong and not necessary for

always guaranteeing a weakly higher ex-ante utility. It will become more relevant when

we discuss the case where u can directly depend on Θ in Section 5.

3.3 Connection and Differences with Blackwell’s Theorem

Theorem 2 is a direct generalization of Blackwell’s theorem. When Θ is a singleton, p and

p′ reduce to Blackwell experiments, and the prior-by-prior dominance condition reduces

to the garbling condition. Prior-by-prior dominance is necessary within the small class

of VEU and it is sufficient within the large class of ambiguity preferences with VMono.

Therefore, prior-by-prior dominance is the equivalent condition corresponding to higher

ex-ante utilities within the many classes of ambiguity preferences nested between them

(e.g., the class of multiple prior preferences VMP and the class of smooth preferences VS).

We take Blackwell’s theorem as a starting point and build our result on it, but we

do not replicate its proof and our result is not its trivial implication. Taking Blackwell’s

theorem as given, the necessity of our prior-by-prior dominance condition is relatively

easy to prove: If pµ is not Blackwell more informative than p′µ for some µ, one can fix

its corresponding expected utility aggregator Vµ and Blackwell’s theorem guarantees the

existence of some triplet (A, u, π) in which p′µ outperforms pµ.

However, proving the sufficiency of our prior-by-prior dominance condition is more

subtle and requires more work.14 The main obstacle lies in the difference of condition 2 in

14This highlights another difference of our result and Blackwell’s theorem in terms of their proof

strategy. For Blackwell’s theorem, it is easier to prove the sufficiency of the garbling condition than its

necessity (for example, see the proofs of Crémer (1982) and de Oliveira (2018)). But for our result, it is

the sufficiency of the prior-by-prior dominance condition that is relatively hard to prove.
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Theorem 2 and its counterpart in Blackwell’s theorem (condition 2 in Theorem 1). One

quick way to prove the sufficiency of the garbling condition in Blackwell’s theorem is to

realize that if p′ = γ◦p, that is, if an unambiguous experiment p′ is obtained by garbling p

with γ, then for any action plan σ′ made for p′, one can obtain exactly the same expected

utility under the experiment p by following the action plan σ := σ′ ◦ γ, since the property

of compositions of stochastic operators guarantees that

U(σ, p) = U(σ′, p′), for all A, u and π. (11)

This proof method could work if we were trying to show that global Blackwell dominance

is sufficient for always guaranteeing a weakly higher ex-ante utility. That is, if we assume

there exists a garbling γ satisfying pµ = γ ◦p′µ for all µ ∈ ∆(Θ), then for any A, u, π and

action plan σ′ for p′, the action plan σ := σ′ ◦ γ satisfies

U
(
σ,p(·, θ)

)
= U

(
σ′,p′(·, θ)

)
, for all θ ∈ Θ. (12)

This proof method does not work when we are trying to show that prior-by-prior domi-

nance is sufficient for guaranteeing a weakly higher ex-ante utility, since the prior-by-prior

dominance condition allows the garbling to depend on µ, and as argued before, it is much

weaker than requiring p to globally Blackwell dominate p′. Under this weaker require-

ment, it is generally impossible to simultaneously obtain the same conditional expected

utility under p′ and p in every auxiliary state θ like in equation (12), since there is a set of

garblings and it is unclear which one should be applied to an action plan for p′ to obtain

a suitable action plan for p.

With our assumption that the aggregator is monotone, proving the sufficiency of the

prior-by-prior dominance condition does not require a condition as strong as equation

(12). We can replace the equality in equation (12) with a weak inequality. This is

the idea behind condition 2 in Theorem 2. Two key steps in proving condition 1 implies

condition 2 are: (i) a careful construction of an auxiliary function capturing the differences

in conditional expected utilities under p and p′ and (ii) the use of a general minimax

theorem to characterize the property of said auxiliary function.

3.4 Experiments with Independent Sources of Ambiguity

Theorem 2 can be applied to comparing ambiguous experiments with independent sources

of ambiguity if we assume more structure to the auxiliary state space Θ. Formally,
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consider an auxiliary state space Θ that can be written as Θ1×Θ2 where Θ1 and Θ2 can

be interpreted as two different aspects of the source of ambiguity. We say two ambiguous

experiments p : Ω×Θ1×Θ2 → ∆(S) and q : Ω×Θ1×Θ2 → ∆(T ) have independent sources

of ambiguity if p does not depend on Θ2 and q does not depend on Θ1. More precisely,

p and q have independent sources of ambiguity if there exist ambiguous experiments

p̂ : Ω×Θ1 → ∆(S) and q̂ : Ω×Θ2 → ∆(T ) satisfying

p(·, θ1, θ2) ≡ p̂(·, θ1) for all θ2 ∈ Θ2, and q(·, θ1, θ2) ≡ q̂(·, θ2) for all θ1 ∈ Θ1.

We sometimes refer to p̂ and q̂ as the reduced experiment of p and q, respectively. With

this additional structure, the prior-by-prior dominance condition relating p and q can be

simplified as follows.

Lemma 1. Given the above construction, p DPBP q if and only if p̂µ D q̂ν for every pair

of marginal distributions (µ, ν) ∈ ∆(Θ1)×∆(Θ2).

That is, p prior-by-prior dominates q if and only if their reduced experiments are

related by the following condition: the expected experiment p̂µ is Blackwell more infor-

mative than q̂ν for any µ ∈ ∆(Θ1) and ν ∈ ∆(Θ2). When Θ1 and Θ2 are identical copies of

the same space, this condition becomes another variation of the prior-by-prior dominance

condition: To compare the informativeness of p̂ and q̂, the DM’s lack of understanding

of the correlation of p̂ and q̂ requires him to compare all possible pairs of expected ex-

periments (p̂µ, q̂ν) corresponding to potentially different beliefs µ and ν, in contrast to

the prior-by-prior dominance condition where the comparison is made between expected

experiments corresponding to the same belief.

Suppose Θ = Θ1×Θ2. Let VEU and VMono denote the class of expected utility aggrega-

tors and the class of monotone aggregators over Θ, respectively. We can combine Theorem

2 and Lemma 1 to have the following result regarding the comparison of experiments with

independent sources of ambiguity.

Corollary 1. Let p, q, p̂ and q̂ be constructed as above. Suppose V is a class of aggre-

gators such that VEU ⊂ V ⊂ VMono, then the following conditions are equivalent:

1. p̂µ is Blackwell more informative than q̂ν for all (µ, ν) ∈ ∆(Θ1)×∆(Θ2).

2. p is preferred to q in every decision problem by every decision maker whose ambi-

guity preference can be represented by some V ∈ V. That is, p gives weakly higher

ex-ante utility than q for every A, u, π, and every V ∈ V.
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In particular, the class of aggregators stated in condition 2 involves those aggrega-

tors that only aggregate over the relevant aspect of the auxiliary state space for each

experiment. For example, for any subjective expected utility aggregator Vη ∈ VEU , Vη

aggegrating over Θ1×Θ2 for p is equivalent to an expected utility aggegator over Θ1 for p̂.

Similarly, Vη aggegrating over Θ1×Θ2 for q is equivalent to an expected utility aggegator

over Θ2 for q̂. In this sense, condition 2 also describes the comparison of ex-ante utilities

for the reduced experiments p̂ and q̂.

3.5 Value of Ambiguous Information

Theorem 2 can be also be used to study the value of ambiguous information.

Let pU : Ω → ∆(S) be specified by pU(ω) ≡ η for all ω ∈ Ω for some η ∈ ∆(S),

that is, pU is an uninformative Blackwell experiment where each ω is mapped to the

same distribution η over S. Blackwell’s theorem indicates that any Blackwell experiment

p is more informative than pU . Therefore, the ambiguous experiment pU defined by

pU(·, θ) ≡ pU for all θ will satisfy p DPBP pU for any ambiguous experiment p. Theorem

2 then implies that any ambiguous experiment p can guarantee a weakly higher ex-ante

utility than pU in every decision problem for every decision maker. In other words, if we

define the value of ambiguous information p as the difference in ex-ante utilities with and

without it, then this value is always non-negative.

This result is analogous to the fact that unambiguous information always carries non-

negative instrumental value for Bayesian expected utility maximizers. In this sense, if

one perceives Blackwell’s theorem as an intuitive and important decision-theoretic fea-

ture within the class of expected utility maximizers, one should also recognize our prior-

by-prior dominance condition as a plausible feature for decision-theoretic frameworks

studying ambiguous information.

4 Comparing Sets of Experiments

In this section, we study a special case where the comparison is between sets of Blackwell

experiments and a DM’s ex-ante utility is computed according to the maximin criterion.

It is special in two ways. First, the auxiliary state space Θ is not explicitly needed at

the outset for the comparison. Second, we focus our attention on the class of ambiguity

preferences corresponding to the maximin criterion. Theorem 2 does not apply in this
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special case since this class of ambiguity preferences does not nest expected utility, and

we will have an informativeness order that is weaker than prior-by-prior dominance. The

result is stated in Section 4.1, and we clarify the connection of the special case with the

general comparison of ambiguous experiments in Section 4.2. The differences between

the special case we considered and the model studied in Gensbittel, Renou, and Tomala

(2015) are discussed in Section 4.3.

4.1 Result

A set of Blackwell experiments is summarized as a pair (S, P ) where S is a finite set of

signal realizations and P is a set of Blackwell experiments where each p ∈ P is a mapping

from Ω to ∆(S). Note that we no longer have the auxiliary state space Θ as a primitive.

P should be interpreted as all unambiguous experiments that are deemed possible by the

DM. We identify P as a subset of R|Ω|×|S| and assume it to be closed under the Euclidean

topology.15 P can be uncountable.

Consider an individual with a finite set of actions A, a state-dependent utility function

u : Ω × A → R and a prior π ∈ ∆(Ω). We define the individual’s ex-ante maximin

utility from a set of Blackwell experiments P to be

max
σ∈AS

min
p∈P

U(σ, p), (13)

where U is defined as in equation (1). That is, when evaluating an action plan σ for P ,

the DM uses the Blackwell experiment in P that gives the lowest expected utility.

Let conv(P ) denote the convex hull of P .16

Theorem 3. Fix two sets of experiments P and P ′. The following are equivalent:

1. For any Blackwell experiment p ∈ conv(P ), there exists another Blackwell experi-

ment p′ ∈ conv(P ′) such that p is Blackwell more informative than p′.

2. Every decision maker who applies Wald’s maximin criterion prefers P to P ′ for any

possible decision problem. That is, P gives weakly higher ex-ante maximin utility

than P ′ for every A, u, and π.

15P is a bounded set since for every element p ∈ P , every entry of p is bounded in [0, 1]. Hence its

closedness implies its compactness.
16The convex combination is taken component-wise, that is, for any p, q ∈ P , tp+ (1− t)q : Ω→ ∆(S)

is defined by (tp+ (1− t)q)(s | ω) = tp(s | ω) + (1− t)q(s | ω).
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If any of the conditions in Theorem 3 holds, we say P is W -more informative than P ′

and write P DW P ′. To better compare DW and DPBP , it is useful to define expected

experiments for a set of Blackwell experiment. For any nonempty set Y , let ∆0(Y ) denote

the set of probability measures over Y with finite support. Let (S, P ) be a set of Blackwell

experiments and ν ∈ ∆0(P ). Then the expected experiment with respect to ν, denoted

by Pν : Ω→ ∆(S), is defined by Pν :=
∑

p∈P pν(p). With this notion, condition 1 can be

rephrased as

1’. For all ν ∈ ∆0(P ), there exists some λ ∈ ∆0(P ′) such that the expected experiment

Pν is Blackwell more informative than P ′λ.

Comparing condition 1’ and the prior-by-prior dominance condition, we can see in-

tuitively that the W -more informative condition is somewhat less restrictive than the

prior-by-prior dominance condition as the latter requires the Blackwell order to hold for

every pair of expected experiments corresponding to the same µ ∈ ∆(Θ). We obtain this

less restrictive condition mainly because we have a more restrictive class of preferences.

DMs who apply the maximin criterion essentially go through all possible priors over Θ

and then focus only to the worst possible ones, and thus ignoring the effect of other priors.

4.2 Connection with Ambiguous Experiments

Ambiguous experiments and sets of Blackwell experiments are different primitives. How-

ever, there is a natural correspondence between them and they are essentially equivalent

when we focus our attention to DMs who use Wald’s maximin criterion.

To see the correspondence, suppose we have two sets of Blackwell experiments (S, P )

and (S ′, P ′), then we can construct an auxiliary state space Θ, and two ambiguous exper-

iments p : Ω× Θ→ ∆(S) and p′ : Ω× Θ→ ∆(S ′) corresponding to (S, P ) and (S ′, P ′),

respectively, in the following way:

Θ := P × P ′

p(s | ω, p, p′) := p(s | ω), ∀(s, ω, p, p′) ∈ S × Ω× P × P ′; and

p′(s′ | ω, p, p′) := p′(s′ | ω), ∀(s′, ω, p, p′) ∈ S ′ × Ω× P × P ′
(14)

That is, the situation with two sets of Blackwell experiments can be re-interpreted as

following: the DM wants to compare P and P ′ but has no additional knowledge on how

their elements are correlated. He therefore creates Θ = P × P ′ as the auxiliary state
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space, as if he is willing to entertain each and every pair of the elements (p, p′) ∈ P × P ′

to be the actual Blackwell experiments he will be facing.

Now suppose we have two ambiguous experiments p and p′, then we can construct

two sets of Blackwell experiments

P := {p(·, θ) | θ ∈ Θ} P ′ := {p′(·, θ) | θ ∈ Θ} (15)

That is, each set of Blackwell experiments is created by collecting the Blackwell experi-

ments in each auxiliary state in its corresponding ambiguous experiment.

Given these constructions in (14) and (15), comparisons of sets of Blackwell experi-

ments using maximin criterion are equivalent to comparisons of ambiguous experiments

for DMs with the Wald aggregator VW .17

Proposition 2. If p, p′, P and P ′ satisfies one of the constructions given by (14) or

(15) with P and P ′ being finite,18 then for any A, u, π, and any action plans σ and σ′,

VW

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
= min

p∈P
U(σ, p), VW

({
U
(
σ′,p′(·, θ)

)}
θ∈Θ

)
= min

p′∈P ′
U(σ′, p′).

In general, comparisons of sets of Blackwell experiments is only a special case of

comparisons of ambiguous experiments, and the resulting informativeness order induced

by the W -more informative condition is different with that induced by the prior-by-prior

dominance condition. This is because the comparisons of sets of Blackwell experiments

are only possible for the specific class of decision makers who uses the maximin criterion.

This class of decision makers corresponds to the Wald aggregator VW , but {VW} is not a

superset of VEU , that is, the class of expected utility aggregators is not a subclass of the

Wald aggregator. Our argument to get the necessity of prior-by-prior dominance in the

general model is through its necessity for the class of expected utility aggregators. Now

that {VW} no longer includes VEU , the prior-by-prior dominance is no longer necessary.

The following proposition states that prior-by-prior dominance is a stronger requirement

than being W -more informative.

Proposition 3. Let P and P ′ be two finite sets of Blackwell experiments and define p

and p′ as in (14), then p DPBP p′ implies P DW P ′, but the converse is not true.

17Recall that VW : RΘ → R is defined by VW (f) = minθ∈Θ f(θ).
18The finiteness assumption in Proposition 2 is only for ease of exposition, a more general proposition

(Proposition 4) without this assumption is stated and proved in the Appendix.
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Modeling ambiguous experiments as sets of unambiguous experiments has its advan-

tages: The framework for Blackwell’s theorem can be applied without much modification.

But such advantages come with costs tightly connected with the maximin criterion: DMs’

potential subjective belief over possible unambiguous experiments are completely ignored

due to the somewhat extreme ambiguity attitude. Even though the result for compar-

isons of sets of experiments is interesting in itself, we may naturally also be interested in

environments that can allow for richer ambiguity preferences.

Figure 1 summarizes the results we have so far.

Preferences with arbitrary

aggregator V : RΘ → R

Preferences

Preferences with monotone aggre-

gator that nest expected utility

Wald’s maximin criterion

global Blackwell dominance:

∃ a garbling γ such that

p′µ = γ ◦ pµ for all µ ∈ ∆(Θ)

Statistical Condition

prior-by-prior dominance:

for all µ ∈ ∆(Θ), ∃ a garbling γµ

such that p′µ = γµ ◦ pµ

W -more informative:

∀ν ∈ ∆0(P ), ∃λ ∈ ∆0(P ′)

such that Pν D P ′λ

Theorem 2

Theorem 3

Proposition 1

Proposition 3

Figure 1: Summary of informativeness orders.

4.3 Connection with the Literature

Our Theorem 3 is closely related to an existing result in Gensbittel, Renou, and Tomala

(2015) (henceforth GRT). Although arriving at seemingly similar results, there are subtle

but important differences between our model and result for comparisons of sets of experi-

ments (W -more informative) and the model and result presented in GRT due to a major

methodological difference: We model Blackwell experiments as collections of conditional

distributions p : Ω→ ∆(S), while GRT model them as joint distributions k ∈ ∆(S × Ω)

over the product space of the payoff-relevant states and the signal realizations. These two

approaches are equivalent in the framework of Blackwell’s theorem. However, these two

approaches are no longer equivalent when ambiguous experiments are studied.
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GRT model ambiguous experiments as compact and convex subsets of ∆(S × Ω).

The benefit of this modeling approach is that one does not need to specify the source of

ambiguity. That is, this method can deal with two special cases: An unambiguous prior

combined with a set of Blackwell experiments (in our sense, i.e., collections of conditional

distributions), or a set of priors combined with a single Blackwell experiment. To get this

benefit, however, the inevitable cost is that the DM’s prior over Ω is no longer a part of

the DM’s preference parameters, but a part of the experiment. For example, we can fix

a Blackwell experiment p : Ω → ∆(S) and pair them with two different (compact and

convex) sets of priors, Π1 ( Π2 on Ω. Then we can find examples of Π1 and Π2 such that

the set of joint distributions induced from a Blackwell experiment p and Π1 is deemed

“more informative than” the set of joint distributions induced from p and Π2 by GRT’s

criterion. For a simple example, consider a decision problem with a single action A = {a}.
Then a larger set of priors necessarily result in lower payoff as the minimum is taken over

a larger set. Thus, their criterion compares the informativeness and ambiguity associated

with the experiment, but also the ambiguity of the specified set of priors on Ω.

Therefore, our criteria differ, and both are useful in different circumstances: Our

criterion is more useful when the modeler cannot observe the decision maker’s prior over

Ω, while GRT’s criterion is more suitable when those priors can be observed.

5 Discussion and Extensions

In this section, we consider relaxing two of the assumptions we previously made. The first

is that u does not depend on Θ, that is, the auxiliary state does not directly affect the

payoff of the DM. And the second is that there is no prior ambiguity, that is, the decision

problems we consider all involve unambiguous prior over Ω. Table 1 is a roadmap for our

exercises on relaxing these two assumptions.

Section 3 5.1 5.2

Dependence of u on Θ No Yes No

Prior ambiguity on Ω No Yes/No Yes

Informativeness order prior-by-prior dominance global Blackwell unclear

Table 1: Roadmap of extensions.
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5.1 Direct Dependence of Payoffs on Θ

In this section, we consider individuals whose payoff may directly depend on the auxiliary

state space Θ. That is, the individual’s state dependent utility function is u : Ω×Θ×A→
R. With this change in setup, an ambiguous experiment p is preferred to p′ by every

DM for every decision problem if and only if p globally Blackwell dominates p′, which is

equivalent to assuming that p is Blackwell more informative than p′ viewing Ω × Θ as

the payoff-relevant state space.

To see why this is the case, note that once the DM’s payoff u depends directly on Θ,

we can expand the payoff-relevant state space from Ω to Ω × Θ. With this expansion,

the ambiguity previously in the information structures is transformed into the ambiguity

in the priors over Θ. That is, the decision maker faces a Blackwell experiment although

there is ambiguity in his payoff-relevant prior. This problem is the center of the study in

Li and Zhou (2016), where they show that Blackwell order continues to be valid when the

decision makers possess uncertainty averse preferences to deal with the ambiguity in the

payoff relevant space.19 The intuition behind this result is as follows. If one experiment

p globally Blackwell dominates another p′, then any probability distribution over the

actions conditional on the states ω and θ, λ(a | ω, θ), that can be induced from some

action plan for p′ can be replicated under p by applying the garbling that transforms

p to p′, and this replication does not depend on the prior over the payoff relevant state

space. Therefore, as long as the payoffs u(ω, θ, a) are aggregated through some aggregator

that respects monotonicity (e.g., the aggregator for the uncertainty averse preferences),

the Blackwell informativeness order will be valid.

5.2 Prior Ambiguity

In this section, we consider decision scenarios in which prior ambiguity (i.e., ambiguity

over Ω) is present. As the case where u depends on Θ and prior ambiguity over Ω are

both present has already been covered in Section 5.1, we focus on the case where u does

not depend directly on Θ in this section.

Formally, we consider an individual with a finite set of actions A, a state-dependent

utility function u : Ω×A→ R and a monotone aggregator V̂ : RΩ×Θ → R that captures his

ambiguity attitude. Notice that V̂ is more general than the aggregators V we considered

19See Theorem 1 of Li and Zhou (2016) for more details.
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in Section 3 since V̂ is aggregating over functions in RΩ×Θ while V is only aggregating

over functions in RΘ.

For such an individual, the expected utility conditional on θ and ω for ambiguous

experiment p and action plan σ is

Û(σ,p(·, θ), ω) :=
∑
s∈S

∑
a∈A

p(s | ω, θ)σ(a | s)u(ω, a) (16)

The ex-ante utility for the individual is

max
σ∈AS

V̂

({
Û
(
σ,p(·, θ), ω

)}
(θ,ω)∈Θ×Ω

)
(17)

With this new formulation involving more general aggregators V̂ , the payoffs u(ω, a) can

be aggregated in a more general way comparing to equation (3). For example, it can

nest the case where the DM has a set of priors over Ω, first aggregating each u(ω, a)

according to the multiple prior preference conditional on each θ and then aggregating the

conditional utilities into the ex-ante utility.

The following proposition illustrates the results when prior ambiguity is present.

Proposition 4. Let p : Ω × Θ → ∆(S) and p′ : Ω × Θ → ∆(S ′) be two ambiguous

experiments. Consider the following 4 conditions:

1. p globally Blackwell dominates p′, that is, p DGB p′.

2. For any A, u and any σ′ ∈ AS′, there exists σ ∈ AS such that

Û(σ,p(·, θ), ω) ≥ Û(σ′,p′(·, θ), ω), ∀(θ, ω) ∈ Θ× Ω.

3. p gives a weakly higher ex-ante utility than p′ for every A, u and V̂ .

4. p prior-by-prior dominates p′, that is, p DPBP p′.

Then, 1 =⇒ 2 ⇐⇒ 3 =⇒ 4.

That is, in terms of guaranteeing higher ex-ante utility for every decision maker (condi-

tion 3), global Blackwell dominance is sufficient and prior-by-prior dominance is necessary.

Although condition 2 is equivalent to condition 3, it is less ideal than what we desire as

an equivalence condition because it is a somewhat high-order condition imposed on all

possible A and u.

The following example illustrates that when prior ambiguity is present, global Black-

well dominance is not necessary for guaranteeing higher ex-ante utility. That is, condition

3 does not imply condition 1.

26



Example 5. Consider Ω = {ω1, ω2}, Θ = {θ1, θ2}, S = S ′ = {s1, s2}, with p and p′

defined as follows:

p(·, θ1) =

s1 s2

ω1 1 0

ω2 0 1

p(·, θ2) =

s1 s2

ω1 1 0

ω2 0 1

p′(·, θ1) =

s1 s2

ω1 1 0

ω2 0 1

p′(·, θ2) =

s1 s2

ω1 0 1

ω2 1 0

That is, p is the unambiguous fully revealing experiment while p′ is fully revealing in

both θ1 and θ2 but sends opposite signals in different auxiliary states. It is clear that p

prior-by-prior dominates p′ but p does not globally Blackwell dominates p′.

Proposition 5. As constructed in Example 5, p gives weakly higher ex-ante utility than

p′ for every A, u, and V̂ .

6 Conclusion

In this paper, we study comparisons of ambiguous experiments and establish informa-

tiveness orders over ambiguous experiments as generalizations of Blackwell’s theorem.

For general ambiguous experiments modeled as mappings from an auxiliary state space

to the space of unambiguous experiments, the informativeness order is induced by the

prior-by-prior dominance condition. One ambiguous experiment p prior-by-prior domi-

nates another p′ if their expected experiments satisfy pµ being Blackwell more informative

than p′µ for every possible belief µ over the auxiliary state space. This informativeness

order is robust among any monotone ambiguity preference that nests expected utility. For

the special case of comparing sets of unambiguous experiments evaluated by the maxmin

criterion, the informativeness order is characterized by being Wald-more informative. One

set of unambiguous experiment P is Wald-more informative than another P ′ if for every

unambiguous experiment in the convex hull of P , there exists an unambiguous experiment

in the convex hull of P ′ that is Blackwell less informative.

An interesting question that remains open is whether or not prior-by-prior dominance

is sufficient for guaranteeing higher ex-ante utility when ambiguity on Ω is present. An-

other potentially fruitful avenue for future research is to study the impact of relaxing the

dynamic consistency assumption within the class of ambiguity preferences more general

than the maxmin expected utility.
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Appendices

A General Auxiliary State Space

In this section, we consider auxiliary state spaces beyond finite sets and we will show that

our results in the main text remain valid in this more general environment.

Let the auxiliary state space Θ be an arbitrary nonempty set.

Ambiguous experiments are defined the same way as in Definition 4, that is, an am-

biguous experiment is a mapping p : Ω× Θ→ ∆(S), where the payoff-relevant space

Ω and the set of signal realizations S are still assumed to be finite.

Consider an individual with a finite set of actions A, a state-dependent utility function

u : Ω × A → R and a prior belief π ∈ ∆(Ω). The expected utility conditional on

state θ, U
(
σ,p(·, θ)

)
, is defined the same way as in equation (2):

U
(
σ,p(·, θ)

)
=
∑
s∈S

∑
ω∈Ω

∑
a∈A

π(ω)p(s | ω, θ)σ(a | s)u(ω, a).

Note that U is bounded as a function of θ for any fixed (p, A, u, π, σ).

We say V : RΘ → R is a monotone aggregator if V (f) ≥ V (g) whenever two

functions f, g : Θ → R satisfy f(θ) ≥ g(θ) for all θ ∈ Θ. Comparing to Definition 5,

we drop the continuity requirement on the aggregator. Let VMono denote the set of all

monotone aggregators.

Let 2Θ denote the set of all subsets of Θ. Let ∆ denote the set of all finitely additive

probability measures over 2Θ. Fixing any µ ∈ ∆, let Vµ denote the aggregator that

corresponds to the (subjective) expected utility index, that is,

Vµ

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
:=

∫
Θ

U
(
σ,p(·, θ)

)
dµ(θ). (18)

The integral is well-defined as U
(
σ,p(·, θ)

)
is a bounded measurable function and µ is a

finitely additive measure (Aliprantis and Border, 2006, Theorem 11.8). Let VSEU denote

the class of all aggregators that corresponds to some (subjective) expected utility index,

that is, VSEU := {Vµ : RΘ → R | µ ∈ ∆}. When Θ is uncountable, VSEU includes the set

of all non-atomic (finitely additive) probability measures, and thus includes the standard

subjective expected utility model à la Savage (1954).

As we no longer require any continuity of V , we slightly modify the definition of the ex-

ante utility for an ambiguous experiment. Fixing an ambiguous experiment p : Ω×Θ→
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∆(S) and (A, u, π, V ), the individual’s ex-ante utility is

sup
σ∈AS

V
({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
.

Comparing to the definition of the ex-ante utility in the main text, we have the supremum

operator instead of the maximum operator. This change has no impact on the interpre-

tation of our comparison result: If p gives higher ex-ante utility than p′, then for any

action plan σ′ that can be made when the DM faces p′, he can find another action plan

σ that guarantees

V
({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
≥ V

({
U
(
σ′,p′(·, θ)

)}
θ∈Θ

)
.

Moreover, without any continuity requirement, we can include more aggregators that

corresponds to more ambiguity preferences.

For any µ ∈ ∆, the expected experiment with respect to µ, pµ : Ω → ∆(S), is a

Blackwell experiment defined similarly as in Definition 7 by

pµ(s | ω) :=

∫
Θ

p(s | ω, θ) dµ(θ), ∀(s, ω) ∈ S × Ω.

Let ∆0 denote the set of all simple probability measures (i.e., probability measures with

finite supports) over 2Θ. For any µ ∈ ∆0, the expected experiment pµ is simply

pµ(s | ω) =
∑
θ∈Θ

p(s | ω, θ)µ(θ), ∀(s, ω) ∈ S × Ω.

We say that an ambiguous experiment p : Ω × Θ → ∆(S) prior-by-prior dominates

another p′ : Ω×Θ→ ∆(S ′) if pµ is Blackwell more informative than p′µ for any µ ∈ ∆0.

Note that when Θ is finite, this coincides with our definition of prior-by-prior dominance

in the main text (Definition 8). Finally, let V0 := {Vµ | µ ∈ ∆0} where Vµ : RΘ → R is

defined as in equation (18).

Theorem 4. Let p : Ω×Θ→ ∆(S) and p′ : Ω×Θ→ ∆(S ′) be two ambiguous experiments

and let V be a class of aggregators such that V0 ⊂ V ⊂ VMono, then the following statements

are equivalent:

1. p prior-by-prior dominates p′.

2. For any A, u, π and any σ′ ∈ AS′, there exists σ ∈ AS such that

U
(
σ,p(·, θ)

)
≥ U

(
σ′,p′(·, θ)

)
for all θ ∈ Θ.
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3. p is preferred to p′ in every decision problem by every decision maker whose ambi-

guity preferences can be represented by some V ∈ V. That is, p gives weakly higher

ex-ante utility than p′ for every A, u, π and every V ∈ V.

When Θ is finite, V0 reduces to VEU as defined in equation (3.1) in the main text and

Theorem 4 coincides with Theorem 2.

In addition to this characterization result, we also want to establish the equivalence of

comparisons of ambiguous experiments and comparisons of sets of Blackwell experiments

in this more general environment. Consider the Wald aggregator in this more general

setting. Formally, let VW : RΘ → R be re-defined by

VW (f) := inf
θ∈Θ

f(θ), (19)

and we apply this aggregator to f(θ) = U
(
σ,p(·, θ)

)
. Let sets of experiments be defined

in the same way as in Section 4.1, that is, a pair (S, P ) where S is a finite set of signal

realizations and P is a closed set (under the Euclidean topology) of Blackwell experiments,

and P could be uncountable. Then we have the following proposition corresponding to

Proposition 2 in the main text.

Proposition 6. For any two sets of Blackwell experiments (S, P ) and (S ′, P ′), we can

construct an auxiliary state space Θ, and two ambiguous experiments p : Ω×Θ→ ∆(S)

and p′ : Ω×Θ→ ∆(S ′) as in (14). Then for all A, u, π, σ and σ′:

VW

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
= min

p∈P
U(σ, p), VW

({
U
(
σ′,p′(·, θ)

)}
θ∈Θ

)
= min

p′∈P ′
U(σ′, p′)

where VW is the Wald aggregator as defined in equation (19), and U
(
σ,p(·, θ)

)
is the

conditional expected utility defined in equation (2).

B Proofs

B.1 Proof of Proposition 1

Proof. Suppose p globally Blackwell dominates p′, then there exists a garbling γ : S →
∆(S ′) such that p′(·, θ) = γ ◦ p(·, θ) for all θ ∈ Θ. Then we must have p′µ = γ ◦ pµ for
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any µ ∈ ∆(Θ), since for any (s′, ω) ∈ S ′ × Ω,

p′µ(s′ | ω) =
∑
θ∈Θ

p′(s′ | ω, θ)µ(θ)

=
∑
θ∈Θ

∑
s∈S

γ(s′ | s)p(s | ω, θ)µ(θ)

=
∑
s∈S

γ(s′ | s)
∑
θ∈Θ

p(s | ω, θ)µ(θ) =
∑
s∈S

γ(s′ | s)pµ(s | ω)

To prove that the converse is not true, consider the following example:

Ω = {ω1, ω2}, Θ = {θ1, θ2}, S = {s1, s2}, S ′ = {s′1, s′2}, and

p(·, θ1) =

s1 s2

ω1 1 0

ω2 0 1

p(·, θ2) =

s1 s2

ω1 0.8 0.2

ω2 0.2 0.8

p′(·, θ1) =

s′1 s′2

ω1 0.8 0.2

ω2 0.2 0.8

p′(·, θ2) =

s′1 s′2

ω1 0.8 0.2

ω2 0.2 0.8

Then any µ ∈ ∆(Θ) can be represented by one parameter k ∈ [0, 1], and the expected

experiments are given by pk = kp(·, θ1) + (1− k)p(·, θ2). Thus,

pk =

s1 s2

ω1 0.8 + 0.2k 0.2− 0.2k

ω2 0.2− 0.2k 0.8 + 0.2k

and p′k =

s′1 s′2

ω1 0.8 0.2

ω2 0.2 0.8

Hence p′k = γk ◦ pk for any k ∈ [0, 1] and the corresponding garbling γk for each k is

γk =

s′1 s′2

s1
3+k
3+2k

k
3+2k

s2
k

3+2k
3+k
3+2k

p does not globally Blackwell dominates p′ since γk varies with the belief k.

B.2 Proof of Lemma 1

Proof of Lemma 1. p prior-by-prior dominates q if pη is Blackwell more informative than

qη for every η ∈ ∆(Θ1×Θ2). Fix some η ∈ ∆(Θ1×Θ2) and let η1 and η2 be the marginal
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distributions over Θ1 and Θ2 induced by η, respectively.

pη =
∑

(θ1,θ2)∈Θ1×Θ2

η(θ1, θ2)p(·, θ1, θ2) =
∑
θ1∈Θ1

(∑
θ2∈Θ2

η(θ1, θ2)

)
p̂(·, θ1) = p̂η1

qη =
∑

(θ1,θ2)∈Θ1×Θ2

η(θ1, θ2)q(·, θ1, θ2) =
∑
θ2∈Θ2

(∑
θ1∈Θ1

η(θ1, θ2)

)
q̂(·, θ2) = q̂η2

For the if direction, suppose p does not prior-by-prior dominates q, then there exists

η ∈ ∆(Θ1 × Θ2) such that pη is not Blackwell more informative than qη. This gives us

a pair of marginal distributions (η1, η2) ∈ ∆(Θ1)×∆(Θ2) such that p̂η1 is not Blackwell

more informative than q̂η2 . Taking the contrapositive completes the proof.

For the only if direction, suppose there exists some pair of marginal distributions

(µ, ν) ∈ ∆(Θ1)×∆(Θ2) such that p̂µ is not Blackwell more informative than q̂ν , then we

can construct a joint distribution η that induces (µ, ν) such that pη is not Blackwell more

informative than qη, making it impossible for p to prior-by-prior dominate q. Taking the

contrapositive completes the proof.

B.3 Proof of Theorem 3

Proof. To prove that 1 =⇒ 2, fix any (A, u, π),

max
σ∈AS

min
p∈P

U(σ, p) = max
σ∈AS

min
p∈conv(P )

U(σ, p)

= min
p∈conv(P )

max
σ∈AS

U(σ, p) (minimax theorem)

= max
σ∈AS

U(σ, p∗) (for some p∗ ∈ conv(P ))

≥ max
σ′∈AS′

U(σ′, p′∗) (for some p′∗ ∈ conv(P ′) by condition 2)

≥ min
p′∈conv(P ′)

max
σ′∈AS′

U(σ′, p′)

= max
σ′∈AS′

min
p′∈conv(P ′)

U(σ′, p′) = max
σ′∈AS′

min
p′∈P ′

U(σ′, p′)

where the second equality follows from von Neumann’s minimax theorem since both

conv(P ) and AS are compact and convex. This concludes the proof for 1 =⇒ 2.

Then we prove 2 =⇒ 1 by proving its contrapositive.
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Suppose there exists p0 ∈ conv(P ) such that p0 is not Blackwell more informative than

any p′ ∈ conv(P ′), we want to construct a triplet (A, u, π) in which

max
σ∈AS

min
p∈P

U(σ, P ) < max
σ′∈AS′

min
p′∈P ′

U(σ′, P ′).

Fix A = S ′, that is, the action space is just the set of signal realizations for P ′. Then

the sets of action plans are AS = {σ | σ : S → ∆(S ′)}, AS′ = {σ′ | σ′ : S ′ → ∆(S ′)}.
Consider an action plan r ∈ AS′ defined by r(s′i | s′j) = 1[i = j], that is, r is the action

plan that just reports the signal realization. Then for any p′ ∈ P ′, r ◦ p′ = p′ since

(r ◦ p′)(s′i | ω) =
∑
s′∈S′

r(s′i | s′)p′(s′ | ω) = p′(s′i | ω), ∀s′i ∈ A and ω ∈ Ω.

Let ΛP ′,r := {r◦p′ | p′ ∈ conv(P ′)}. That is, ΛP ′,r is the set of all probability measures over

A conditional on Ω that can be induced by action plan r together with some Blackwell

experiment. Then ΛP ′,r = conv(P ′). Similarly, let Λp0 := {σ ◦ p0 | σ ∈ AS}.
For any u : Ω× S ′ → R and π ∈ ∆(Ω),

max
σ∈AS

U(σ, p0) = max
σ∈AS

∑
s∈S

∑
ω∈Ω

π(ω)p0(s | ω)
∑
a∈A

σ(a | s)u(ω, a)

= max
σ∈AS

∑
ω∈Ω


∑
a∈S′

u(ω, a)
∑
s∈S

σ(a | s)p0(s | ω)︸ ︷︷ ︸
σ◦p0

 π(ω)

= max
λ∈Λp0

∑
ω∈Ω

(∑
a∈S′

u(ω, a)λ(a | ω)

)
π(ω)

where the last equality follows from the one-to-one correspondence of AS and Λp0 .

Since p0 is not more informative than p′ for any p′ ∈ conv(P ′), Λp0 ∩ΛP ′,r = ∅. If not,

there must exist λ in their intersection Λp0∩ΛP ′,r, which further indicates the existence of

an action plan σ : S → ∆(S ′) and an experiment p′ ∈ conv(P ′) such that σ ◦ p0 = λ = p′,

that is, some p′ ∈ conv(P ′) is a garbling of p0. Contradiction.

But both Λp0 and ΛP ′,r are compact and convex subsets of R|Ω|×|S′|, hence we can

apply the separating hyperplane theorem and conclude that there exists a nonzero vector

v ∈ R|Ω|×|S′| and real numbers c1 < c2 such that∑
ω∈Ω

∑
a∈S′

v(ω, a)λ(a | ω) < c1,
∑
ω∈Ω

∑
a∈S′

v(ω, a)λ′(a | ω) > c2, ∀λ ∈ Λp0 , ∀λ′ ∈ ΛP ′,r.
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Consider A = S ′, u = v as given above, and π = uniform(Ω).

max
σ∈AS

U(σ, p0) = max
λ∈Λp0

∑
ω∈Ω

(∑
a∈S′

v(ω, a)λ(a | ω)

)
π(ω)

=
1

|Ω|
· max
λ∈Λp0

∑
ω∈Ω

∑
a∈S′

v(ω, a)λ(a | ω)

<
1

|Ω|
· min
λ′∈ΛP ′,r

∑
ω∈Ω

∑
a∈S′

v(ω, a)λ′(a | ω) = min
p′∈conv(P ′)

U(r, p′)

where the inequality follows from the separation result above and the last equality follows

from the one-to-one correspondence of ΛP ′,r and conv(P ′).

Therefore, with (A, u, π) = (S ′, v, uniform),

max
σ∈AS

min
p∈P

U(σ, p) = max
σ∈AS

min
p∈conv(P )

U(σ, p)

= min
p∈conv(P )

max
σ∈AS

U(σ, p)

≤ max
σ∈AS

U(σ, p0)

< min
p′∈conv(P ′)

U(r, p′) = min
p′∈P ′

U(r, p′) ≤ max
σ′∈AS′

min
p′∈P ′

U(σ′;P ′)

where the first and the last equalties follow from the facts that U(·, ·) is linear in its

second argument. The second inequality follows from von Neumann’s minimax theorem

since both conv(P ) and AS are convex and compact and U(·, ·) is linear in both arguments.

This completes the proof of the contrapositive.

B.4 Proof of Proposition 2

Proof of Proposition 2. We focus on p and P , the proof for p′ and P ′ is the same. Fix

A, u, π and σ. Under the construction in (14),

VW

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
= min

θ∈Θ
U
(
σ,p(·, θ)

)
= min

(p,p′)∈P×P ′
U
(
σ,p(·, (p, p′))

)
= min

p∈P
U(σ, p).

Under the construction in (15),

min
p∈P

U(σ, p) = min
θ∈Θ

U
(
σ,p(·, θ)

)
= VW

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
.

This completes the proof.
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B.5 Proof of Proposition 3

Proof. Suppose it is not the case that P DW P ′, then there exists (A, u, π) in which P ′

yields strictly higher ex-ante maximin utility than P . Combine this triplet (A, u, π) with

the aggregator VW , we find a quadruple (A, u, π, VW ) in which p′ yields strictly higher

ex-ante utility than p. Thus, by Theorem 2, p does not prior-by-prior dominates p′.

Taking the contrapositive completes the proof.

To see the converse is not true, consider the following example:

Ω = {ω1, ω2}, S = S ′ = {s1, s2}, and

P =


s1 s2

ω1 0.9 0.1

ω2 0.1 0.9

 , P ′ =


s1 s2

ω1 1 0

ω2 0 1

,

s1 s2

ω1 0 1

ω2 1 0

 .

Then P DW P ′, but no matter how we defined the auxiliary state space Θ, we do not get

prior-by-prior dominance.

B.6 Proof or Proposition 4

Proof. To see 1 =⇒ 2: let σ′ be any action plan made for p′ and let γ be the garbling

that transforms p to p′. Consider σ′ ◦ γ, σ′ ◦ γ is a feasible action plan for p, moreover,

for any (θ, ω) ∈ Θ× Ω,

Û(σ′ ◦ γ,p(·, θ), ω) =
∑
s∈S

∑
a∈A

p(s | ω, θ)(σ′ ◦ γ)(a | s)u(ω, a)

=
∑
s∈S

∑
a∈A

p(s | ω, θ)
∑
s′∈S′

σ′(a | s′)γ(s′ | s)u(ω, a)

=
∑
s′∈S′

∑
a∈A

(∑
s∈S

p(s | ω, θ)γ(s′ | s)

)
σ′(a | s′)u(ω, a)

=
∑
s′∈S′

∑
a∈A

p′(s′ | ω, θ)σ′(a | s′)u(ω, a) = Û(σ′,p′(·, θ), ω)

That is, by taking the action plan σ′ ◦ γ, the DM obtains the same conditional expected

utilities in every pair of states (ω, θ). This together with the assumption that the aggre-

gator V̂ is monotone completes the proof.

The equivalence of 2 and 3 is straightforward.

To see 3 =⇒ 4: Comparing to our model in Section 3, the combination of a unique

prior π over Ω and an aggregator V over RΘ is just one special case of the more general
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aggregator V̂ over RΩ×Θ. Therefore, the set of possible (A, u, π, V ) is expanded, and prior-

by-prior dominance must still be necessary for guaranteeing higher ex-ante utility.

B.7 Proof of Proposition 5

Proof. Fix any finite set of actions A = {a1, a2, . . . , an}, and let the state-dependent

utility u : Ω× A→ R be summarized by

u(ωi, aj) = uij for i ∈ {1, 2} and j ∈ {1, . . . , n}.

Let σ denote the DM’s action plan facing p, with σij := σ(aj | si). That is, σij is the

probability that the DM plays aj after observing signal si. Note that
∑

j σij = 1 for

i ∈ {1, 2}. Let σ′ denote the DM’s action plan facing p′, with σ′ij defined accordingly.

Write Ûσ
p (θ, ω) to get a more compact notation for conditional expected utilities , that is,

Ûσ
p (θ, ω) := Û

(
σ,p(·, θ), ω

)
.

Then we have

Ûσ
p (θ, ωj) =

n∑
k=1

σjkujk, ∀θ ∈ {θ1, θ2}, j ∈ {1, 2}

Ûσ′

p′ (θ1, ωj) =
n∑
k=1

σ′jkujk, ∀j ∈ {1, 2}

Ûσ′

p′ (θ2, ω1) =
n∑
k=1

σ′2ku1k and Ûσ′

p′ (θ2, ω2) =
n∑
k=1

σ′1ku2k

Thus, for any σ′ ∈ AS′ , we can find σ ∈ AS such that

Ûσ
p (θ, ω) ≥ Ûσ′

p′ (θ, ω), for all (θ, ω) ∈ Θ× Ω.

To achieve this, let ūi := maxj∈{1,...,n} uij and n∗i ∈ arg maxj∈{1,...,n} uij, and consider

σ∗ ∈ AS be defined by σ∗ij = 1[j = n∗i ]. Let σ′ be an arbitrary action plan in AS′ , then

Ûσ∗

p (θ1, ω1) = ū1 =
n∑
k=1

σ′1kū1 ≥
n∑
k=1

σ′1ku1k = Ûσ′

p′ (θ1, ω1)

Ûσ∗

p (θ1, ω2) = ū2 =
n∑
k=1

σ′2kū2 ≥
n∑
k=1

σ′2ku2k = Ûσ′

p′ (θ1, ω2)

Ûσ∗

p (θ2, ω1) = ū1 =
n∑
k=1

σ′2kū1 ≥
n∑
k=1

σ′2ku1k = Ûσ′

p′ (θ2, ω1)

Ûσ∗

p (θ2, ω2) = ū2 =
n∑
k=1

σ′1kū2 ≥
n∑
k=1

σ′1ku2k = Ûσ′

p′ (θ2, ω2)
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Then for any monotone aggregator V̂ : RΩ×Θ → R,

sup
σ∈AS

V̂
(
Ûσ
p (·, ·)

)
≥ V̂

(
Ûσ∗

p (·, ·)
)
≥ sup

σ′∈AS′
V̂
(
Ûσ′

p′ (·, ·)
)
.

That is, p gives weakly higher ex-ante utility than p′ for any possible (A, u, V̂ ).

B.8 Proof of Theorem 4

We prove Theorem 4 by showing that 1 =⇒ 2 =⇒ 3 =⇒ 1.

Proof. Recall that ∆0 is the set of all probability measures over Θ with finite support and

p DPBP p′ if pµ is Blackwell more informative than p′µ for all µ ∈ ∆0.

To see 1 =⇒ 2:

Let Γ denote the set of all garblings, that is, Γ := {γ | γ : S → ∆(S ′)}. Γ is compact

and convex since both S and S ′ are finite. Fix A, u, π and σ′ ∈ AS′ , we define an auxiliary

function H : Γ×∆0 → R by

H(γ, µ) := U(σ′ ◦ γ,pµ)− U(σ′,p′µ).

That is, H(γ, µ) is difference in the expected utilities of p and p′ conditional on belief

µ ∈ Θ and garbling γ being applied to the action plan made for p′.

To prove 1 implies 2, it suffices to show that

max
γ∈Γ

inf
µ∈∆0

H(γ, µ) ≥ 0.

To show that the left hand side is well defined and nonnegative, we invoke the Kneser-Fan

minimax theorem for concave-convex functions (Terkelsen, 1972).

Γ is a compact and convex subset of R|S|×|S′| under the Euclidean topology. ∆0 is a

convex subset of the vector space RΘ. For each γ ∈ Γ, the function µ 7→ −H(γ, µ) is linear

(hence concave) on ∆0. For each µ ∈ ∆0, the function γ 7→ −H(γ, µ) is linear (hence

convex and continuous since Γ is finite dimensional) on Γ. Therefore, by the Kneser-Fan

minimax theorem for concave-convex functions (Terkelsen, 1972, page 411, Corollary 2),

min
γ∈Γ

sup
µ∈∆0

−H(γ, µ) = sup
µ∈∆0

min
γ∈Γ
−H(γ, µ),

which further indicates that

max
γ∈Γ

inf
µ∈∆0

H(γ, µ) = inf
µ∈∆0

max
γ∈Γ

H(γ, µ).
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But the right hand side of the equation above is non-negative, since for any µ ∈ ∆0, the

prior-by-prior dominance condition guarantees that there exists some γµ ∈ Γ such that

p′µ = γµ ◦pµ and this garbling γµ guarantees that H(γµ, µ) = 0. This completes the proof

that 1 =⇒ 2 since σ′ ◦ γ ∈ AS is a valid action plan for p.

To see 2 =⇒ 3:

Fix any (A, u, π, V ) with V ∈ VMono and let v∗ denote the ex-ante utility for p′, that

is,

v∗ := sup
σ′∈AS′

V
({
U
(
σ′,p′(·, θ)

)}
θ∈Θ

)
.

Then for any ε > 0, there exists σ′ε ∈ AS′ such that

V
({
U
(
σ′ε,p

′(·, θ)
)}

θ∈Θ

)
> v∗ − ε.

By condition 2 in Theorem 4, there exists an action plan σε ∈ AS such that

U
(
σε,p(·, θ)

)
≥ U

(
σ′ε,p

′(·, θ)
)
, ∀θ ∈ Θ.

By the monotonicity of V , this further indicates that

V
({
U
(
σε,p(·, θ)

)}
θ∈Θ

)
≥ V

({
U
(
σ′ε,p

′(·, θ)
)}

θ∈Θ

)
> v∗ − ε.

Since this holds for any ε > 0, we have supσ∈AS V
({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
≥ v∗.

To see 3 =⇒ 1:

It suffices to prove the necessity of prior-by-prior dominance when V = V0. That is, if

p is preferred to p′ by every decision maker with V ∈ V0, then p DPBP p′.

Suppose by contradiction that it is not the case p DPBP p′, then there must exist

some µ ∈ ∆0 such that pµ is not Blackwell more informative than p′µ. Fixing this belief

µ and its corresponding aggregator Vµ ∈ V0, that is, the DM believes that µ is the correct

distribution over Θ and use aggregator Vµ to evaluate action plans. Thus, this DM’s

ex-ante utility is

sup
σ∈AS

Vµ

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
= sup

σ∈AS

∑
θ∈Θ

U
(
σ,p(·, θ)

)
µ(θ)

= sup
σ∈AS

U

(
σ,
∑
θ∈Θ

p(·, θ)µ(θ)

)
= sup

σ∈AS
U(σ,pµ) = max

σ∈AS
U(σ,pµ)
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Since pµ is not Blackwell more informative than p′µ, then by Theorem 1, there must exist

a triplet (A, u, π) such that

max
σ∈AS

U(σ,pµ) < max
σ′∈AS′

U(σ′,p′µ),

which further indicates that in (A, u, π, Vµ),

sup
σ∈AS

Vµ

({
U
(
σ,p(·, θ)

)}
θ∈Θ

)
< sup

σ′∈AS′
Vµ

({
U
(
σ′,p′(·, θ)

)}
θ∈Θ

)
which is a direct contradiction to our assumption that p gives weakly higher ex-ante utility

for any (A, u, π, V ) with V ∈ V0. This completes the proof that prior-by-prior dominance

is necessary for any class of aggregators V ⊃ V0.

B.9 Proof of Proposition 6

Proof. The proof is essentially the same with that of Proposition 2. The infimum on

the left hand side can be replaced by a minimum since the Θ = P × P ′ is compact

and our construction of p and p′ guarantees the continuity of U
(
σ,p(·, θ)

)
in θ (this is

because θ 7→ p(·, θ) is just (p, p′) 7→ p, which can be viewed as a projection map and thus

continuous as we endow P × P ′ with the product topology).
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